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ABSTRACT
Standard methods for inferring demographic parameters from genetic data are based mainly on one-

locus theory. However, the association of genes at different loci (e.g., two-locus identity disequilibrium)
may also contain some information about demographic parameters of populations. In this article, we
define one- and two-locus parameters of population structure as functions of one- and two-locus probabilities
for the identity in state of genes. Since these parameters are known functions of demographic parameters
in an infinite island model, we develop moment-based estimators of effective population size and immigra-
tion rate from one- and two-locus parameters. We evaluate this method through simulation. Although
variance and bias may be quite large, increasing the number of loci on which the estimates are derived
improves the method. We simulate an infinite allele model and a K allele model of mutation. Bias and
variance are smaller with increasing numbers of alleles per locus. This is, to our knowledge, the first
attempt of a joint estimation of local effective population size and immigration rate.

IN finite populations, genes undergo a random sam- ing and variance effective sizes take the same value
(Crow and Kimura 1970, chap. 8) as does the eigen-pling process, known as genetic drift. As a conse-

quence of this process, genetic variation is continuously value effective size (Ewens 1982). This model assumes
a finite monoecious population of constant size, non-lost. A powerful way to illustrate this point is that if we

could trace the genealogy of genes, going backward in overlapping generations, random mating, and equal ex-
pected contribution of individuals to the next genera-time, we would observe a continuous decrease in the

number of “ancestor” genes. For neutral genes, the dy- tion (Fisher 1930; Wright 1931).
The conditions under which the different definitionsnamic of this process depends mostly on the effective

population size. Indeed, the expected time elapsed of Ne coincide can be understood by considering the
relationship between the rate of coalescence and thesince two genes diverged from their common ancestor

(the coalescence time) increases with the effective popu- effective population size. The asymptotic rate at which
two genes coalesce (the probability of coalescence) inlation size. The effective population size, noted Ne, has
a single ideal monoecious diploid population of N indi-been defined as the size of an ideal population, in which
viduals is 1/(2N). But consider a structured populationa given genetic parameter (e.g., the rate of inbreeding)
with different classes of individuals. Those classes maytakes the same expected value as in the population un-
represent groups of individuals differing by their sex,der scrutiny (Wright 1931). This suggests that there
age, stage, social rank, or geographical position. In con-may be many different effective sizes depending on
trast with unstructured populations, lines of descentwhich parameter is chosen. Indeed, the inbreeding ef-
may now coalesce at different rates within classes andfective size has been defined from the expected rate of
among classes.increase in homozygosity, and the variance effective size

There is a strict relationship between probabilities ofis derived from the expected rate of increase of variance
identity by descent and coalescence times (Malécotin allele frequency per generation (Crow and Den-
1975; Slatkin 1991). Indeed, the leading eigenvalueniston 1988). Ewens (1979) also defined the eigen-
of the transition matrix describing the increase in iden-value effective size as the first nonunit eigenvalue of the
tity by descent for pairs of genes gives the long-termtransition matrix for allelic changes in a population. In
rate of coalescence of lineages. It is also equal to thethe particular case of the Wright-Fisher model, inbreed-
leading nonunit eigenvalue of the transition matrix that
gives the change in the distribution of allelic states
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gene frequency variance, and the expected rate of gene flow from genetic data (Slatkin and Barton
1989). However, all the approaches based on FST or thechange in the distribution of allelic states (Whitlock

and Barton 1997). rare allele method of Slatkin (1985) cannot untangle
the effect of drift from the migration pattern (SlatkinMating systems, variance in the reproductive success

of individuals, changes in population size through time, and Barton 1989). Indeed, gene flow is estimated as
Nem, the product of effective population size and immi-skewed sex ratios, and overlapping generations are some

factors expected to make the effective size different gration rate, and is referred to as the “effective number
of migrants” per generation. Even more powerful meth-from the census size (Caballero 1994). The effective

population size also affects the efficiency of natural se- ods, based on coalescent theory, have the same draw-
back (Slatkin and Maddison 1989; Beerli andlection in maintaining advantageous mutations or pro-

moting the spread of new ones. A small effective size Felsenstein 1999). Tufto et al. (1996) developed a
maximum-likelihood method to estimate patterns ofalso reduces the ability of natural selection to purge

slightly deleterious alleles. Slightly deleterious muta- migration from allele frequency distribution. Their
method provides estimates for short and long rangetions are more likely to be fixed, decreasing the mean

fitness of the population and, thus, further reducing migration rates, but with the effective population size
treated as a known parameter.the effective population size (Lynch and Gabriel 1990;

Gabriel and Bürger 1994). This runaway process, de- Here, we propose a method-of-moments approach to
infer effective population size on the one hand andscribed as the mutational meltdown, eventually leads to

extinction (Lande 1994; van Noordwijk 1994; Lynch immigration rate on the other hand, based on estimates
of functions of one- and two-locus identity probabilities.et al. 1995a,b). But despite its importance in predicting

population health or inferring past demography, esti- One-locus parameters are functions of first and second
moments of allele frequencies. Two-locus identity prob-mation of effective size in natural populations is still a

difficult task (Waples 1989; Schwartz et al. 1999). abilities are functions of higher-order moments, up to
the fourth (Ohta 1982a,b). One-locus identity probabil-Since the discrepancy between the census and the

effective size of a population depends mainly on the ities are influenced primarily by genetic drift and local
immigration. Two-locus identity probabilities are alsoparameters of the mating system and relative reproduc-

tive success of individuals, effective population size can influenced by drift and migration, through the forma-
tion of gametic disequilibria (Weir and Cockerhambe calculated from the direct evaluation of these param-

eters (Nunney and Elam 1994). However, the demo- 1969; Cockerham and Weir 1977; Ohta 1982a,b;
Tachida and Cockerham 1986). Thus, the joint analy-graphic data needed to calculate the effective popula-

tion size are difficult to obtain practically in natural sis of one- and two-locus identity probabilities provides
more information on the parameters of interest thansituations (Crow and Denniston 1988). Moreover, sin-

gle-season assessments of these parameters are known to the analysis of only one-locus parameters.
In a companion article, we derived the expected valuesoverestimate long-term effective population size, since

interannual fluctuations in population size are not for two-locus probabilities for identity in state in an
island model with partial selfing (Vitalis and Couvettaken into account (Vucetich et al. 1997). As an alterna-

tive to direct evaluation of effective population size from 2001). We defined a two-locus parameter, which we call
the “within-subpopulation identity disequilibrium,” asecological data, indirect estimates of effective size from

genetical data have attracted much attention. So far, the excess of two-locus identity probabilities over the
product of single-locus probabilities among individualsindirect estimates have been based on the temporal

change in allele frequencies (Nei and Tajima 1981; within subpopulations. Here, we first recall the defini-
tions of one- and two-locus identity probabilities andPollak 1983; Waples 1989; Williamson and Slatkin

1999), the excess of heterozygotes in progeny (Pudov- derive the expectation for one-locus parameters. We
then define appropriate statistics for estimating one-kin et al. 1996; Luikart and Cornuet 1999), and link-

age disequilibrium (Hill 1981; Waples 1991; Bartley and two-locus parameters, whose expectations depend
on the population parameters of interest (effective sizeet al. 1992).

It is worth noting that all of these approaches assume Ne, migration rate m) and not on some nuisance parame-
ters, such as the mutation rate or the model of mutation.a single isolated population. However, in natural situa-

tions, it is more likely that populations of the same Then, we present a simple method-of-moments joint
estimation of effective size and migration rate. We fur-species are connected, to some extent, by gene flow

(Slatkin 1987). Indeed, from an evolutionary and eco- ther explore the reliability of Ne and m estimators by
means of stochastic simulations.logical perspective, the only way a species can persist in

fragmented and changing habitats is to disperse (Han-
ski and Gilpin 1997). Moreover, patterns of dispersal

THEORY
are of primary importance in preventing or favoring
local adaptation (Maynard Smith and Hoekstra One-locus population structure: The expectation of

any descriptive statistic of population genetic structure1980). There have been several attempts to estimate
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can ultimately be expressed as a function of some proba-
Fi ≈ 1

1 1 4Neimi

. (4)bilities of identity in state for pairs of genes taken at
different hierarchical levels (within individuals, among

A measure of this parameter can therefore be used toindividuals within a population, among populations).
make some inferences about the product of the localLet us consider an infinite island model of population
effective population size and immigration rate.structure (Wright 1940). This model assumes that the

We also derived the recursion equations for IIS proba-whole population (or the species) is subdivided into an
bilities in the K allele model (KAM). In this model,infinite number of subpopulations that exchange genes.
there are a finite number (K) of possible allelic statesWe may relax the usual assumption of equal subpopula-
at a locus. Since the unconditional probability of muta-tion sizes and immigration rates and then define as
tion is m, each gene mutates toward a particular allelemany sets of parameters as there are subpopulations. A
with probability m/(K 2 1). Thus, genes that were IISfocal subpopulation i has Nei diploid individuals and
in the previous generation are still IIS in the currentreceives mi migrant genes per generation. We define Q0,i
generation with probability n9 5 (1 2 m)2 1 m2/(K 2as the probability that two homologous genes randomly
1). Also, genes that were different in state in the previoussampled in one individual from subpopulation i are
generation can become IIS in the current generationidentical in state (IIS), Q1,i as the IIS probability for two
with probability v 5 (1 2 n9)/(K 2 1). Therefore,genes randomly sampled in subpopulation i, and Q2
recursion equations for the IIS probabilities in the KAMmay also be defined as the IIS probability for two genes
are given byrandomly sampled in the pool of immigrants.

Let us first assume an infinite allele model (IAM). In
Qt11

0,i 5 ai1sn9 1 Q 9t
0,i

2
1 (1 2 s)Q 9t

1,i2 1 (1 2 ai)Q 9t
2this model, mutation always creates a new allelic state

in the population. Therefore, genes that are IIS are
also identical by descent (IBD), i.e., two exact copies

Qt11
1,i 5 ai1 1

Nei

n9 1 Q 9t
0,i

2
1 11 2

1
Nei

2Q 9t
1,i2 1 (1 2 ai)Q 9t

2(without mutation) of the same ancestral gene (Malé-
cot 1948). Let ai 5 (1 2 mi)2 be the frequency of pairs

Qt11
2 5 Q 9t

2 , (5)of genes that come from the same subpopulation in the
previous generation. Each generation, some offspring with Q9t

h 5 n9Qt
h 1 v(1 2 Qt

h) defined as the condi-
are produced by selfing. We define s as the conditional tional IIS probabilities for pairs of genes taken in the
probability that two homologous genes of one individual hth state of the hierarchy (h 5 0, 1, 2), after mutation,
were produced by the same individual, given that they given the IIS probabilities Qt

h before mutation (see
are copies of genes from one subpopulation in the previ- Crow and Aoki 1984; Rousset 1996, for similar devel-
ous generation. Mutations arise at rate m, and n 5 (1 2 opments). The range of Q1,i is strongly dependent on
m)2. The recursion equations for IBD probabilities in the total number of alleles at a locus. In particular,
the IAM are given by when there are K possible allelic states at a locus, the

theoretical range of Q1,i is bounded below by 1/K (see
Qt11

0,i 5 n3ai1s1 1 Qt
0,i

2
1 (1 2 s)Qt

1,i2 1 (1 2 ai)Qt
24 Appendix 10 in Crow and Kimura 1970, p. 515). On

the other hand, at equilibrium,

Qt11
1,i 5 n3ai1 1

Nei

1 1 Qt
0,i

2
1 11 2

1
Nei

2Qt
1,i2 1 (1 2 ai)Qt

24
Fi 5

aai

aai(2 2 aai) 1 Nei(1 2 aai)(2 2 aais)
, (6)

Qt11
2 5 nQt

2. (1)
with a 5 (n9K 2 1)/(K 2 1). Equation 6 is of the same

A useful parameter to consider is form as Equation 3, with a replacing n. Therefore, for
m ! m, Fi has the same expectation in the IAM and

Fi 5
Q1,i 2 Q2

1 2 Q2

. (2) the KAM. This result suggests that Fi is an appropriate
function of IIS probabilities, since this parameter is

The weighted sum of Fi over subpopulations is the in- nearly independent of the number of allelic states (Ta-
traclass correlation for the probability of identity in state ble 1).
of genes within subpopulations relative to the whole Two-locus population structure: The one-locus theory
population, which is FST (Cockerham and Weir 1987; for IIS probabilities can be extended to the two-locus
Rousset 1996). At equilibrium, case (Cockerham 1984; Goodnight 1987, 1988). In a

random mating population, three two-locus IIS proba-
Fi 5

nai

nai(2 2 nai) 1 Nei(1 2 nai)(2 2 nais)
. (3) bilities need to be defined (see Whitlock et al. 1993)

for pairs, triplets, and quadruplets of sampled haplo-
types (we call a haplotype a set of two genes taken atFor small mutation rates, this parameter is inversely
two distinct loci, which is inherited from a single parent,related to the effective number of migrants per genera-

tion, Neimi, after recombination). However, in any case of departure
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TABLE 1

Expected one-locus identity probabilities and two-locus
identity disequilibrium, with special reference to

the effect of the mutation model

m K Q1 F hS h9S

1026 2 0.597586 0.195172 0.000599 0.002398
5 0.356142 0.195177 0.001536 0.002399

10 0.275661 0.195179 0.001944 0.002400

1024 ∞ 0.194397 0.194397 0.002390 0.002390
1025 0.195108 0.195108 0.002399 0.002399
1026 0.195179 0.195179 0.002400 0.002400

Parameters of the model are Ne 5 50, Nem 5 1 for a sample
size of n 5 50 diploid individuals. Random mating is assumed
in the population.

from random mating, more coefficients must be de-
fined, since IIS probabilities defined for pairs, triplets,
or quadruplets of haplotypes may have different expec-
tations whether these haplotypes are sampled in two,
three, or four individuals. For this purpose, we defined
a total of 10 IIS two-locus probabilities (see Vitalis and
Couvet 2001, for further details). Figure 1 depicts the
definition of two-locus IIS probabilities.

For example, for two-individual IIS probabilities, φ is
defined as the probability that two haplotypes sampled
in two distinct individuals are IIS at the two loci consid-
ered. g is defined as the probability that, when a single
haplotype of one individual and the two haplotypes of
a second individual are sampled, both pairs of homolo-
gous genes taken among the two individuals are IIS.
And d is the probability that, when both haplotypes of Figure 1.—Definition of two-locus probabilities for the
each individual are sampled, one pair (across individu- probability of identity in state (IIS). Vertical lines show sam-
als) is IIS at the first locus, and the other (distinct) pair pled haplotypes, on which upper and lower positions of solid

circles represent two loci. Each diploid individual is repre-is IIS at the second locus. See Figure 1 and Vitalis and
sented by a box. Horizontal lines (;) between pairs of homolo-Couvet (2001) for the definition of other IIS probabili-
gous genes stand for identity in state. In the infinite alleleties. model, these coefficients define the corresponding probabili-

In a diploid population, the gametic phase is usually ties for identity by descent (IBD). Only the sampled haplotypes
not known. Therefore, we define the compound IIS are shown.
two-locus probability for two pairs of genes, each taken
at two distinct loci, among individuals in a population

probability of simultaneous identity over that expectedas
from random combination of the identity at two loci
(Ohta 1980). It is also equivalent to the covariance ofF 5

φ 1 2g 1 d

4
. (7)

nonidentity at two loci within populations (Avery and
Hill 1979). We derived the recursion equations for allThe expected gametic disequilibrium can be expressed
these two-locus probabilities in the IAM (IBD probabili-by the within-subpopulation identity disequilibrium
ties) and in the KAM (IIS probabilities; Vitalis and(hS,ij), across loci i and j. Identity disequilibrium is equiv-
Couvet 2001). The parameter hS is a monotonic de-alent to the covariance for a pair of one-locus identity
creasing function of Ne, for a given value of F (Figureprobabilities in a random pair of individuals,
2). Therefore, there is a single pair of Ne and m values

hS,ij 5 Fij 2 d4ij, (8) that provides a given pair of hS and F values.
It follows also from this graph that, besides any consid-

eration about the variance of the estimates, large effec-where d4ij is the two-locus probability of identity by de-
scent among loci i and j, when all genes are sampled tive sizes would be difficult to estimate, since the ampli-

tude of the variation of hS with effective population sizefrom distinct haplotypes. hS is equivalent to the excess



915Estimation of Population Parameters

Q2 5 %3o
K

u51

(xijkuxi9j9k9u)4 (10)

with i9 ? i. An unbiased estimator of the frequency of
allele u among n sampled individuals is given by P̂ u

i 5

on
j51o2

k51xijku/(2n). Expanding the square of this expres-
sion and taking expectation gives %[(P̂ u

i )2|P] 5
[Pu

i (1 1 2(n 2 1)Pu
i ) 1 Puu

i ]/(2n). Therefore,

Q̂1,i 5 o
K

u51

[P̂ u
i (2nP̂u

i 2 1) 2 P̂ uu
i ]/[2(n 2 1)], (11)

where P̂ uu
i 5 on

j51o2
k9?kxijkuxijk9u is an unbiased estimator

of the frequency of homozygotes for allele u. An estima-
tor for the IIS probability for genes taken in different
subpopulations is given by

Q̂2 5 o
K

u51
o

d

i9?i

P̂ u
i P̂ u

i9/[d(d 2 1)] (12)
Figure 2.—Expected identity disequilibrium h9S as a func-

tion of effective population size and one-locus identity proba- for d sampled subpopulations. Finally, approximatingbility F, in an infinite allele model with m 5 1026. The effective
the expectation of a ratio by the ratio of expectations,number of immigrant individuals per generation (Nem) was
an estimator of Fi can be given asfixed to 1 and random mating was assumed in the population.

Note the logarithmic scale on the x-axis.
F̂i 5 ou[(P̂ u

i (2nP̂ u
i 2 1) 2 P̂ uu

i )/[2(n 2 1)]

2 oi9?iP̂ u
i P̂ u

i9/[d(d 2 1)]]/(1 2 ouoi9?iP̂ u
i P̂ u

i9/[d(d 2 1)]).
decreases as the effective size increases. Moreover, the

(13)
amplitude of variation depends on F, suggesting that the
efficiency of estimation should vary with the population To combine the information over loci, we define a
genetic diversity. The joint analysis of one- and two- multilocus estimator as the ratio of the sum of locus-
locus identity probabilities for unlinked loci should thus specific numerators over the sum of locus-specific de-
permit the estimation of effective population size, pro- nominators (Reynolds et al. 1983; Weir and Cock-
vided this parameter is not of too high an order. Ob- erham 1984).
taining reliable estimates for large population sizes Two-locus statistics: Now, xiju is the indicator variable
would require tightly linked loci (see also Hill and that describes the state of gene j in individual i at a first
Weir 1994). locus and yijv is the indicator variable that describes the

state of gene j in individual i at a second, distinct, locus.
For the sake of clarity, all subpopulation indices are

ESTIMATION
dropped in this section. xiju 5 1 if the allelic state at the

One-locus statistics: For any given allele u, we define first locus is u, xiju 5 0 otherwise; and yijv 5 1 if the allelic
the indicator variable xijku to describe the state of the state at the second locus is v, yijv 5 0 otherwise. Let Pu

v

kth gene, with k 5 (1, 2), of the jth individual in the be the frequency of two-locus haplotypes bearing alleles
ith subpopulation. xijku 5 1 if the allelic state is u, xijku 5 u and v (alleles in phase). Then Pu

v 5 %(xijuyijv|P), with
0 otherwise. Let Pu

i be the frequency of allele u in the %( |P) denoting the expectation, conditional on the
subpopulation i. Then, Pu

i 5 %(xijku|P), with %( |P) de- array P of all the haplotype frequencies. We also define
noting the expectation, conditional on the array P of all Pu·

·v 5 %(xijuyij9v|P) as the frequency of pairs of alleles u
the allele frequencies. Considering the second moments and v taken from the same individual but from different
of the random variable xijku, it follows that %(x 2

ijku|P) 5 haplotypes (alleles in repulsion). As in the one-locus
P u

i and %(xijkuxij9k9u|P) 5 (P u
i )2, with j9 ? j and k9 ? k. Sum- case, summing over all possible pairs of alleles and then

ming over all alleles gives the probability that two genes taking expectations over the distribution of haplotype
randomly taken from distinct individuals are IIS, frequencies P give the following IIS probabilities:

φ 5 %3o
u,v

(Pu
v)24Q1,i 5 %3o

K

u51

(Pu
i )24, (9)

g 5 %3o
u,v

(Pu
vPu·

·v)4where % denotes now the expectation over the distribu-
tion of allele frequencies P. We also define Puu

i as the
d 5 %3o

u,v
(Pu·

·vPu·
·v)24. (14)frequency of homozygotes for allele u in the subpopula-

tion i. Then, %(xijkuxijk9u|P) 5 (Puu
i )2. The IIS probability

for two genes randomly taken in the whole population However, since the gametic phase is usually unknown,
Pu

v and Pu·
·v are not measurable in practice from genotypiccan be defined as
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data. We rather evaluate their mean, noted Pu
v, as Pu

v 5 isfy the following criteria: (i) The parameter depends
on the population parameters of interest, and not on(P u

v 1 Pu·
·v)/2. Therefore, the IIS probability for two hap-

lotypes among individuals within a population is defined any other parameter; (ii) the expectation of an estima-
tor of this quantity, taken over replicates of the stochas-as
tic process of drift, depends only on the parameters of

F 5 %3o
u,v

(P u
v)24. (15) interest (unbiased statistic); and (iii) the distribution

of this unbiased estimator depends on the parameters
An unbiased estimate of Pu

v is given by P̂u
v 5 on

i51o2
j,j9 3 of interest, and not on any other parameter. This allows

xijuyij9v/(4n). Expanding the square of this expression the measures to be compared across loci or populations,
and then taking expectation, conditional on the array as well as to be pooled over loci.
P of all the haplotype frequencies, gives Various parameters of gametic disequilibrium among

loci i and j have been standardized with the product of
%3(P̂ u

v)2|P4 5 [P u
v[1 1 4(n 2 1)P u

v] 1 P uu
vv1 P u·

vv 1 P uu
v· ]/(4n), the Hardy-Weinberg heterozygosities or nonidentities

(Hedrick 1987; Ohta 1980),(16)

where Puu
vv is the frequency of double homozygotes for

h9S,ij 5
Fij 2 d4ij

(1 2 Q2i)(1 2 Q2j)
. (21)alleles u and v, Puu

v· is the frequency of individuals that
are homozygotes for allele u at the first locus and that

An estimator for the standardized identity disequilib-carry one copy of allele v at the second locus, and where
rium h9S,ij among loci i and j isPu·

vv is the frequency of individuals that are homozygotes
for allele v at the second locus and that carry one copy

ĥ9S,ij 5
F̂ij 2 Q̂1iQ̂1j

(1 2 Q̂2i)(1 2 Q̂2j)
. (22)of allele u at the first locus. Therefore, an unbiased

estimator for F is
Whereas the absolute measure of identity disequilib-F̂ 5 o

u,v
[P̂ u

v(4nP̂u
v 2 1) 2 P̂ uu

vv 2 P̂ uu
v· 2 P̂ u·

vv]/[4(n 2 1)],
rium hS depends on the mutation rate and the model

(17) of mutation, the standardized measure h9S is insensitive
to the mutational process (Table 1), even if the matingwhere P̂ uu

vv is the observed frequency of double homozy-
system departs from panmixia (not shown). The combi-gotes for alleles u and v, and where P̂ uu

v· (respectively
nation of identity disequilibrium measures over pairs ofP̂ u·

vv) is the observed frequency of homozygotes for allele
loci is achieved by taking the ratio of averaged numera-u (respectively v) that carry one copy of allele v (respec-
tors and denominators over pairs of loci and over sam-tively u) at the second locus. An estimator of the identity
ples (Ohta 1980).disequilibrium among loci i and j is given by

Estimators for F and h9S have been evaluated through
ĥS,ij 5 F̂ij 2 Q̂1iQ̂1j. (18) the simulation of a population in an infinite island

model. Several mutation models (from the two-alleleIndeed, the expectation of this statistic is
model to the infinite allele model) were compared. For
five alleles and more, the mean values for the parame-%(ĥS,ij) 5 Fij31 2

2
n(n 2 1)4 2

4(n 2 2)
n(n 2 1)

Gij
ters are close to their expectations and do not depend
on the mutation model (Table 2). This agrees with the

2
(n 2 2)(n 2 3)

n(n 2 1)
d4ij (19) criteria given above. The effect of sample size is more

pronounced for identity disequilibrium measures than
for one-locus parameter measures. Indeed, increasingwith Gij 5 (g3ij 1 d3ij)/2. For large samples sizes,
the sample size decreases the variance among h9S esti-

%(ĥS,ij) ≈ Fij 2 d4ij. (20) mates.
Estimation of Ne by the method-of-moments: For aThus, provided the sample size is not too small, ĥS,ij 5

focal population within an infinite island model, weF̂ij 2 Q̂1iQ̂1j is an unbiased estimator of the identity
have two statistics F̂ and ĥ9S, whose expectations aredisequilibrium among loci i and j.
known functions of the population parameters of inter-However, hS depends on the underlying mutation
est, namely the effective population size Ne and themodel (Table 1). There has been some debate in the
immigration rate m. Their expectations do not dependliterature about the dependence on some measures of
on any nuisance parameters such as the mutationgametic disequilibrium of the underlying allellic fre-
model, but do depend on some other parameters, suchquencies (Hedrick 1987; Lewontin 1988). At the ori-
as the reproductive system or the extent of (physical)gin of this dispute is the fact that Hedrick (1987) con-
linkage of markers. However, these latter parameterssidered allelic frequencies as fixed parameters. An
may be estimated from independent data. Therefore,alternative approach is to consider allelic frequencies as
we assume in the following that the selfing rate, as wellrandom variables, whose distribution depends on some
as the recombination rate among loci, is known.parameters of the population model. In this sense, we

expect that a good measure of disequilibrium shall sat- We solve numerically a system of two simultaneous
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TABLE 2

Estimated properties for one- and two-locus parameters

F̂ ĥ9S

K Ne n F Mean s h9S Mean s

2 20 25 0.187917 0.187614 0.086208 0.005229 0.005133 0.007491
20 50 0.186695 0.080968 0.005362 0.005379 0.005641
50 25 0.195172 0.196953 0.087050 0.002338 0.002209 0.006024
50 50 0.196924 0.081832 0.002398 0.002552 0.004265

5 20 25 0.187919 0.187542 0.058231 0.005230 0.005152 0.003507
20 50 0.190018 0.055673 0.005363 0.005352 0.002881
50 25 0.195177 0.194750 0.056116 0.002339 0.002394 0.002734
50 50 0.192533 0.050428 0.002399 0.002437 0.001846

10 20 25 0.187919 0.190234 0.054219 0.005230 0.005332 0.003074
20 50 0.189385 0.050953 0.005363 0.005355 0.002304
50 25 0.195179 0.193779 0.046168 0.002339 0.002337 0.001872
50 50 0.196065 0.047252 0.002400 0.002505 0.001540

∞ 20 25 0.187920 0.186700 0.046215 0.005230 0.005111 0.002249
20 50 0.189787 0.043126 0.005363 0.005515 0.002018
50 25 0.195179 0.194349 0.040393 0.002339 0.002265 0.001428
50 50 0.197306 0.039202 0.002400 0.002423 0.001133

Arithmetic means as well as standard deviations (s) of F̂ and ĥ9S are given for various simulated effective
population sizes and mutation models. Estimates are based on 1000 measures (see text for details) from a
simulated population of size Ne, receiving a proportion 1/Ne of migrant haplotypes each generation. A total
of 50 individuals were sampled without replacement. Random mating was assumed in the population. Eight
loci were simulated. The mutation rate was 1026. K indicates the number of alleles simulated per locus.

equations, with two unknowns, as follows. For a wide parameters. Local random mating was assumed in all
the results presented thereafter. For each set of simula-range of Ne values starting from Ne 5 2, Equation 6 is

solved for m, with F 5 F̂. Then, for each pair of Ne and tions, the initial population was formed with 2Ne differ-
ent alleles at each locus. For each set of parameters, them values, the expected value of ĥ9S is calculated as
results from 10 independent simulations were pooled.

%(ĥ9S,ij) 5 [Fij[1 2 2/[n(n 2 1)]] 2 Gij[4(n 2 2)]/[n(n 2 1)] In each simulation replicate, the first measure was real-
ized after 1000 generations, and then every 100 genera-2 d4ij[(n 2 2)(n 2 3)]/[n(n 2 1)]]/[(1 2 Q2i)(1 2 Q2i)]
tions, to avoid temporal correlation across samples, for

(23) 100 times. Fifty individuals were sampled for each mea-
sure. Indeed, since the identity disequilibrium may be(see Equations 19 and 22) from the recursive equations
very small in many circumstances, reasonably large sam-given in Vitalis and Couvet (2001). The solutions for
ple sizes are required. However, this sample size is repre-Ne and m are then obtained for the best fit between this
sentative of those found in the literature (see William-expected value and ĥ9S over a wide range of Ne values
son and Slatkin 1999, and references therein).(up to 10 times the true Ne).

Estimation efficiency was also assessed by examining
the percentage of successful inferences as compared

ASSESSING THE METHOD-OF-MOMENTS with unsuccessful ones. Indeed, among the 1000 identity
ESTIMATOR measures obtained for a set of simulations, there were

some cases in which reliable Ne estimates could not beSimulation procedure in an infinite island model: We
inferred. Overall, we distinguished three cases.evaluated the method of inference through simulations.

Case 1: For a given F value, the ĥ9S estimate overridesWe focused our analysis on a focal population receiving
its possible range. This is interpreted as a very smallmigrants from an infinitely large number of popula-
effective population size (Ne # 2).tions. In practice, a single local population consisting of

Case 2: The estimate for ĥ9S is negative. This is interpre-Ne diploid individuals was simulated. Gametic dispersal
ted as an infinite effective population size. We also ex-occurred prior to reproduction. Under the IAM, at every
cluded estimates that were .10 times the true Ne in thislocus, immigrant individuals carried alleles that were
latter category.absent from the local population. Therefore, the proba-

Case 3: The estimation of Ne is reliable [lying in thebility to draw IIS genes from two different populations
interval (2, 10 3 Ne)].(Q2) was considered to be zero in the IAM and Q2 5

Simulation results: Concerning the estimation of ef-1/K in the KAM. In both cases, Q2 was taken as a fixed
parameter when calculating statistics for the population fective population size, a first source of bias is expected
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TABLE 3

Results from simulations for an infinite allele model

Inference
Estimated N̂e Estimated m̂ efficiency

L Ne H c.v. 95% C.I. m Mean c.v. 95% C.I. 1 2 3

4 20 17.75 0.63 8.10–51.88 0.05 0.0553 0.51 0.0194–0.1070 0.0 0.2 99.8
50 43.32 0.88 19.21–192.77 0.02 0.0232 0.62 0.0052–0.0487 0.0 5.3 94.7

100 70.02 1.07 26.91–465.71 0.01 0.0141 0.70 0.0025–0.0337 0.0 17.3 82.3

8 20 18.75 0.45 10.18–39.06 0.05 0.0537 0.40 0.0235–0.0933 0.0 0.0 100.0
50 47.74 0.61 24.92–131.15 0.02 0.0212 0.46 0.0071–0.0384 0.0 0.3 99.7

100 91.70 0.94 41.95–426.41 0.01 0.0110 0.60 0.0023–0.0229 0.0 5.5 94.5

12 20 18.86 0.37 9.94–36.64 0.05 0.0530 0.39 0.0251–0.0910 0.0 0.0 100.0
50 48.45 0.48 26.06–107.73 0.02 0.0209 0.42 0.0085–0.0366 0.0 0.0 100.0

100 98.84 0.80 47.53–332.14 0.01 0.0102 0.54 0.0028–0.0205 0.0 2.9 97.1

16 20 18.81 0.36 10.73–34.68 0.05 0.0533 0.38 0.0260–0.0888 0.0 0.0 100.0
50 48.64 0.46 26.86–105.44 0.02 0.0210 0.41 0.0088–0.0366 0.0 0.0 100.0

100 97.49 0.76 50.83–292.93 0.01 0.0105 0.49 0.0033–0.0205 0.0 0.8 99.2

Results are based on 1000 measures (see text) from a simulated population of size Ne receiving a proportion
m of migrant individuals per generation. n is the number of diploid individuals that were sampled without
replacement. Harmonic means (H) for Ne and arithmetic means for m are given for various simulated effective
population sizes and various numbers of loci. Coefficients of variation (c.v.), the ratio of standard deviation
over the mean, are also indicated. A 95% confidence interval (C.I.) is defined from the 5th and 95th percentiles.
An assessment of inference efficiency is given with special reference to three distinct cases in the process of
inference. Case 1 is the percentage of too large hS values for a fit to be reliable, which is expected for a very
small effective population size. Case 2 is the percentage of either negative hS estimates, which give an infinite
effective size, or N̂e estimates .10 times the true Ne. Case 3 is the percentage of successful inferences from
which results are given.

to result from the following. One- and two-locus identity more, the percentage of successful estimation (Case 3)
was .95% (Table 3).parameters are inversely related to effective population

size. As a consequence, even if estimates of parameters In the KAM, harmonic means for Ne are biased down-
ward for 8 loci and less, in a more significant way thanare unbiased, effective population size estimates may be

biased, since the expectation of an inverse function is in the infinite allele model (Figure 3, Table 4). This
point is also indicated by a lower percentage of success-not the inverse of the expectation of the function, as

discussed in Cockerham and Weir (1993). This is why ful inferences (Table 4). The variance was smaller in a
10-allele rather than in a 5-allele model. Again, increas-we present harmonic rather than arithmetic means of

N̂e estimates. ing the number of loci reduces both the variance and
the confidence interval for the estimates. The estima-In the IAM, harmonic means for N̂e may be underesti-

mated (43.32 for Ne 5 50 and 70.02 for Ne 5 100) when tion was efficient (.85% of successful estimates) for 12
loci and more, or for 8 loci with at least 10 alleles. As4 loci are pooled (Table 3). However, for a greater

number of loci, estimates are in very close agreement in the IAM, unsuccessful estimates (Case 1) occurred
only when the true effective size was small, and too largewith true values (Figure 3, Table 3). Indeed, increasing

the number of loci reduces the confidence interval, as estimates (Case 2) occurred only when the true effective
size was large. Again, estimates of immigration ratesgiven by the interval between the 5th and 95th percen-

tiles of the overall distribution of estimates. Increasing were close to the truth, although they were slightly over-
estimated in all cases.the number of loci also increases the percentage of

successful inferences (Table 3). Estimations of immigra- We also evaluated the method for various migration
rates in an infinite allele model with 8 and 16 indepen-tion rates were also in close agreement with the truth.

Estimates generally have a high variance, as indicated dent loci (Table 5, Figure 4). Bias and variance were
reduced with a higher effective number of migrantsby the coefficients of variation. However, the variance

was substantially reduced when at least 8 loci were sam- per generation, Nem. Indeed, the dispersion around the
mean was large for low migration rate. In this model,pled. The estimation was very efficient in most cases. In

all cases, we note that estimating effective size ,2 never lower immigration rates imply also lower levels of gene
diversity within subpopulations, and therefore a pooreroccurred (Case 1). Conversely, for 8 loci and less, esti-

mating infinite effective size (Case 2) occurred only estimation efficiency.
We obtained a confidence region from the joint distri-when the true effective size was large. For 12 loci and
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Figure 3.—Harmonic means and distribution of Ne estimates for a range of parameters. Three true effective sizes were
simulated (20, 50, and 100, as indicated by horizontal dashed lines) with Nem 5 1. Simulations were performed for various
numbers of unlinked loci, as well as for various mutation models, ranging from 5- and 10-allele models to the infinite allele
model, with m 5 1026. For each set of parameters, 1000 measures of one- and two-locus parameters were performed. The
confidence limit gives the 5th and 95th percentiles of the distribution of all realized inferences. Note the logarithmic scale on
the y-axis. See Tables 3 and 4 for a summary of these sets of simulations.

bution of Ne and m estimates in the following way: All population model. For this purpose, we simulated a
finite island model. Twenty subpopulations were used,simulations were run to generate a large number of

observations, each of which consisted of a pair of Ne each containing the same number of reproducing indi-
viduals and receiving the same number of immigrantand m estimates. These observations were binned to a

two-dimensional array of size 100 3 100. The bins did haplotypes per generation. As in the infinite island
model, a single subpopulation was repeatedly sampled.not overlap, had the same width, and were evenly distrib-

uted in both dimensions. All bin counts were standard- In contrast to the infinite island model, migration per
se cannot maintain polymorphism within a subpopula-ized by the total number of counts in the two-dimen-

sional array, and the discrete probability distribution tion in a finite island model. Therefore, in our simula-
tions, mutations will arise at a sufficient rate to maintainwas derived. Then, the cells were sorted in order of

decreasing probability. Finally, starting from the cells polymorphism. We chose the mutation rate so that the
product dNem is at least equal to 1. With smaller dNemwith the highest associated probabilities, cells were se-

quentially added to the confidence region until the values, not enough variation was maintained at equilib-
rium. In particular, we used two mutation rates, m 5cumulative probability of the whole set of cells obtained

was less than or equal to the preliminary fixed q-value. 1023 and m 5 5 3 1023, giving dNem 5 1 and dNem 5
5 (with Ne 5 50 and d 5 20). These two mutationFrom this procedure, we obtained for each simulation

a region within which a fraction q of the data lay. This rates remain in the range of realistic values, as given by
Estoup and Angers (1998) for microsatellite markers.confidence region was not constrained to be contin-

uous. As one might expect, the results depend on the level
of genetic variation (Table 5). With m 5 1023, the bias
and variance of the Ne and m estimates are always larger

ROBUSTNESS TO MODEL ASSUMPTIONS
than those obtained with the infinite island model. With
m 5 5 3 1023, we obtained results that were in veryFinite number of demes: The reliance on the infinite
close agreement with those obtained with the infiniteisland model might be seen as a serious drawback of
island model. With only eight loci, bias and coefficientour method. However, developing the theory in a finite
of variation can even be smaller with the simulations basedisland model would necessitate as many as 28 distinct
on the finite island model. In all cases, however, the biastwo-locus identity coefficients (instead of 10 here) and
for Ne estimates was positive, although it was always nega-would be thus far more complicated. In contrast, we
tive when an infinite island model was simulated.assumed that the number of demes had a small effect

Figure 5 shows the joint distributions of Ne and mon our estimators. Therefore, we chose to test our
method on data sets generated from a more realistic estimates over different numbers of loci and different



920 R. Vitalis and D. Couvet

TABLE 4

Results from simulations for a K allele model

Inference
Estimated N̂e Estimated m̂ efficiency

L K Ne H c.v. 95% C.I. m Mean c.v. 95% C.I. 1 2 3

4 5 20 12.92 1.02 4.23–91.29 0.05 0.0743 0.81 0.0117–0.1899 1.2 9.5 89.3
50 25.18 1.23 8.37–268.07 0.02 0.0384 0.93 0.0048–0.1081 0.1 26.2 73.7

100 33.44 1.27 11.58–423.45 0.01 0.0294 1.06 0.0026–0.0835 0.0 36.1 63.9

10 20 16.03 0.92 5.63–81.84 0.05 0.0603 0.72 0.0120–0.1404 0.9 2.7 96.4
50 35.21 1.04 14.70–210.67 0.02 0.0286 0.78 0.0048–0.0657 0.0 16.5 83.5

100 51.26 1.23 18.31–440.86 0.01 0.0191 0.82 0.0024–0.0488 0.0 28.2 71.8

8 5 20 17.49 0.77 7.41–65.3 0.05 0.0577 0.63 0.0160–0.1294 0.2 0.6 99.2
50 41.36 1.03 16.27–248.39 0.02 0.0248 0.74 0.0042–0.0610 0.0 9.7 90.3

100 64.02 1.14 25.25–489.45 0.01 0.0158 0.75 0.0023–0.0393 0.0 22.3 77.7

10 20 17.80 0.57 8.34–47.65 0.05 0.0553 0.51 0.0197–0.1133 0.0 0.0 100.0
50 45.57 0.80 19.60–179.6 0.02 0.0222 0.59 0.0056–0.0466 0.0 2.3 97.7

100 80.23 1.01 36.02–460.98 0.01 0.0126 0.64 0.0022–0.0276 0.0 14.3 85.7

12 5 20 17.53 0.63 7.94–49.46 0.05 0.0570 0.56 0.0197–0.1173 0.0 0.0 100.0
50 46.00 0.89 20.59–200.37 0.02 0.0218 0.62 0.0048–0.0449 0.0 3.1 96.9

100 81.25 1.05 34.29–525.36 0.01 0.0127 0.72 0.0021–0.0304 0.0 14.5 85.5

10 20 19.22 0.44 9.89–41.09 0.05 0.0538 0.45 0.0239–0.1001 0.0 0.0 100.0
50 47.08 0.79 22.74–164.06 0.02 0.0214 0.52 0.0061–0.0424 0.0 0.9 99.1

100 92.90 0.90 42.03–400.13 0.01 0.0108 0.62 0.0025–0.0235 0.0 7.8 92.2

16 5 20 18.87 0.48 9.26–44.62 0.05 0.0534 0.47 0.0239–0.1004 0.0 0.0 100.0
50 46.83 0.75 23.65–148.73 0.02 0.0221 0.53 0.0067–0.0457 0.0 1.5 98.5

100 87.19 1.00 39.74–430.81 0.01 0.0117 0.65 0.0021–0.0262 0.0 11.0 89.0

10 20 18.62 0.41 10.09–37.61 0.05 0.0546 0.42 0.0248–0.0967 0.0 0.0 100.0
50 48.60 0.52 25.83–117.28 0.02 0.0213 0.47 0.0077–0.0392 0.0 0.0 100.0

100 91.16 0.88 44.05–370.74 0.01 0.0110 0.56 0.0026–0.0221 0.0 4.2 95.8

See Table 3 legend for details. K is the number of alleles simulated per locus.

TABLE 5

Results from simulations for various population models

Estimated N̂e Estimated m̂ Inference efficiency

Nem H c.v. 95% C.I. m Mean c.v. 95% C.I. 1 2 3

Simulations based on an infinite island model: m 5 1026

0.5 42.70 0.95 16.59–222.61 0.01 0.0117 0.68 0.0022–0.0273 0.0 5.4 94.6
1.0 47.79 0.68 24.16–133.76 0.02 0.0211 0.48 0.0069–0.0392 0.0 0.3 99.7
2.0 48.45 0.31 30.66–82.54 0.04 0.0420 0.32 0.0226–0.0669 0.0 0.0 100.0

Simulations based on a finite island model: m 5 1023

0.5 38.87 0.98 14.62–251.29 0.01 0.0166 1.21 0.0023–0.0446 0.2 13.7 86.1
1.0 38.95 1.01 14.87–226.16 0.02 0.0334 1.25 0.0044–0.0934 0.4 9.3 90.3
2.0 36.95 0.99 15.33–228.84 0.04 0.0633 1.12 0.0081–0.1913 3.0 10.0 87.0

Simulations based on a finite island model: m 5 5 3 1023

0.5 56.72 0.77 27.00–219.13 0.01 0.0141 0.59 0.0032–0.0296 0.0 5.3 94.7
1.0 53.49 0.64 27.91–152.62 0.02 0.0258 0.51 0.0082–0.0500 0.0 0.7 99.3
2.0 50.32 0.44 30.43–97.78 0.04 0.0502 0.48 0.0219–0.0906 0.0 0.2 99.8

See Table 3 legend for details. For all sets of parameters, eight loci were scored among 50 sampled individuals.
An infinite island model was assumed.
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Figure 4.—Joint distribution of Ne and m estimates for various effective numbers of migrant individuals per generation and
various numbers of loci. In all cases, the true local population size was fixed to 50. Local random mating was assumed, and an
infinite allele model of mutation was used (m 5 1026). For each set of parameters, 1000 estimates of one- and two-locus parameters
were obtained (see text for details). The regions plotted are the 95% confidence regions for the sampling distribution of the
estimators and were obtained directly from two-dimensional histograms of Ne and m estimates, as explained in the text. Dotted
lines show the true values for the parameters. Note the logarithmic scale in both dimensions. See Table 5 for a summary of this
set of simulations.

effective numbers of migrants per generation, for two Surprisingly, after only 50 generations, bias and vari-
ance of joint Ne and m estimates were as small as afterdifferent mutation rates. As in the infinite island model,

we obtained better estimates with larger numbers of 1000 generations (Figure 6). With eight loci sampled
among 50 individuals, N̂e 5 52.33 [coefficient of varia-migrants per generation (Nem). With m 5 1023, even

with 16 loci, the distributions of pairwise Ne and m esti- tion (c.v.) 5 0.60] and m̂ 5 0.0216 (c.v. 5 0.45). Esti-
mates were more biased and the variance of the distribu-mates are always broader than the distributions ob-

tained with data generated from infinite island model tion was larger for m than for Ne estimates. Moreover,
after 30–40 generations, Ne estimates showed bias andsimulations (to compare, see Figure 4). With m 5 5 3

1023 (Table 5, Figure 5B), the bias and variance were variance as low as after 1000 generations. In all cases,
the joint inference was successful in .99% of cases.very close to the values obtained in the infinite island

model. Bias and variance were also greatly reduced when
16 loci were scored (Figure 5). Increasing the sample size

DISCUSSION
up to n 5 100 also increases the estimation efficiency:
more successful inferences are made, all of which give Effective population size is directly related to the as-

ymptotic rate of coalescence for neutral genes. Thus,slightly less biased estimates with less variance.
Departure from equilibrium: Among the methods this population parameter determines the rate at which

neutral genetic variation is lost from the population.that aim at inferring population parameters, many rely
on the hypothesis of equilibrium between mutation, Therefore, any attempt to provide a reliable estimate

of effective population size should deserve careful evalu-migration, and drift. Our approach is no exception. To
test whether our method was sensitive to recent depar- ation. Our method is, to our knowledge, the first at-

tempt for a joint estimation of (local) effective popula-tures from migration drift equilibrium, we conducted
the same simulations as before with an infinite island tion size and immigration rate.

An advantage of using this method-of-moments tomodel of population structure. But this time, individuals
were sampled 10, 20, 30, 40, or 50 generations after the estimate Ne is that it requires only a single sample. Our

estimates of effective population size are in generalinitial state. This process was repeated 1000 times.
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Figure 5.—Joint distribution of Ne and m estimates for different values of Nem and different numbers of loci. A finite island
model was simulated with 20 demes of equal effective population sizes Ne 5 50. The migration rate was set to m 5 0.02. Each
time, 50 diploid individuals within a single subpopulation were sampled. See Figure 4 for additional details. (A) m 5 1023. (B)
m 5 5 3 1023. Note the logarithmic scale on x- and y-axes. See Table 5 for a summary of this set of simulations.
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polymorphic loci, such as microsatellite markers. In all
the results that we presented, the sample size was repre-
sentative of those used in empirical studies found in
the literature (Williamson and Slatkin 1999). Of
course, the joint estimates may also be improved with
larger sample sizes. As we have shown, the reliance of
our method on the infinite island model of population
structure is not tremendous (Table 5, Figure 5). Al-
though the mutation rates we used may seem to be high,
they fall in the range of realistic values for microsatellite
markers (Estoup and Angers 1998). When using un-
linked loci, our method seems to give reasonably robust
estimates even when recent changes in population struc-
ture or size have arisen (Figure 6). This may not be
true, however, if one intends to use closely linked loci
(to estimate larger effective sizes, for example).

We did not directly compare the results obtained with
this method to other tentative estimations. The main
reason is that alternative methods do not always estimate
the same quantities. Another reason is that the number
of required samples may be different. Variance of effec-
tive population size has been tentatively estimated from
temporal changes in allele frequency (Nei and Tajima
1981; Pollak 1983; Waples 1989). These estimates also
exhibited high variance (Waples 1989). Williamson
and Slatkin (1999) recently proposed a maximum-

Figure 6.—Joint distribution of Ne and m estimates in non- likelihood method to estimate effective population sizeequilibrium situations. An infinite island model was simulated
from temporal change in allele frequencies. This im-with Ne 5 50 and m 5 0.02. Five data sets were obtained as
provement of the method, although having smaller biasfollows. Starting from an initial state where all genes in the

population are distinct, 50 individuals were sampled after 10, and lower variance, still exhibited a large variance. How-
20, 30, 40, or 50 generations. In each case, the process was ever, Williamson and Slatkin (1999) stated that the
repeated 1000 times. The 95% confidence regions for each maximum-likelihood estimate of population size fromdata set are shown. An infinite allele model of mutation was

temporal change in allele frequency should be difficultused (m 5 1026). Dotted lines show the true values for the
to compute exactly when there are more than two allelesparameters. Note the logarithmic scale on both axes.
per locus. Maximum-likelihood methods for highly poly-
morphic loci could be implemented using Monte Carlo
Markov chain computations.slightly biased (Figure 3). The dispersion around the

mean, as shown by the coefficient of variation as well Pudovkin et al. (1996) provided an estimate of the
effective number of breeders in a population from theas by the 95% confidence interval, is large and increases

with the true population size (Figure 3, Table 3). Bias observed excess of heterozygotes in the progeny relative
to Hardy-Weinberg expected proportions in the baseand variance are also decreased when the local immigra-

tion rate is increased (Figure 4). In this latter situation, population. Any heterozygote excess relative to the
expected distribution for random mating populationsthe genetic diversity within the population is increased,

as well as the gametic disequilibrium, making the estima- results from a difference in allele frequencies among
different gamete pools. Indeed, in finite diploid popula-tion procedure more efficient.

However, we show that the bias and variance of effec- tions, a difference in the allele frequencies between
male and female uniting gametes is expected from thetive population size estimates can be substantially re-

duced when F̂ and ĥ9S are estimated over 8 loci or more sampling error due to the finite size of male and female
gamete pools and from the difference in allele frequen-in the infinite allele model, or 12 loci or more in K

allele model (Figure 3, Table 4). Increasing the number cies among male and female parents (Wang 1996).
Luikart and Cornuet (1999) further evaluated theof allelic states has also been shown to improve the

estimation. We thus recommend using a large number accuracy and precision of this method. This procedure
provides reliable estimates for very small numbers ofof highly polymorphic loci for this method to be reli-

able. With the advances of molecular techniques in the breeders, but is sensitive to the mating system. More-
over, this method does not hold for consanguineouslast decade, this recommendation (using at least 8

highly polymorphic loci) is not unrealistic. Indeed, it is reproductive systems.
Effective population size has also been evaluated fromnow common practice to work with at least 8–10 highly



924 R. Vitalis and D. Couvet

Caballero, A., 1994 Developments in the prediction of effectivethe measure of the variance of the correlation of allele
population size. Heredity 73: 657–679.

frequencies between pairs of loci (Hill 1981; Waples Cockerham, C. C., 1984 Additive by additive variance with inbreed-
ing and linkage. Genetics 108: 487–500.1991; Bartley et al. 1992). In an infinite isolated ran-

Cockerham, C. C., and B. S. Weir, 1977 Digenic descent measuresdom mating population at mutation-drift equilibrium,
for finite populations. Genet. Res. 30: 121–147.

the correlation of (neutral) allele frequencies at a pair Cockerham, C. C., and B. S. Weir, 1987 Correlations, descent mea-
sures: drift with migration and mutation. Proc. Natl. Acad. Sci.of loci is zero. In a finite population, however, genetic
USA 84: 8512–8514.drift causes the allele frequencies at independent loci

Cockerham, C. C., and B. S. Weir, 1993 Estimation of gene flow
to be correlated. Moreover, the magnitude of this corre- from F-statistics. Evolution 47: 855–863.

Crow, J. F., and K. Aoki, 1984 Group selection for a polygeniclation depends on the effective population size (Weir
behavioural trait: estimating the degree of population subdivi-and Hill 1980; Hill 1981; Waples 1991). This method
sion. Proc. Natl. Acad. Sci. USA 81: 6073–6077.

gave discouraging results and has not been evaluated Crow, J. F., and C. Denniston, 1988 Inbreeding and variance effec-
tive population numbers. Evolution 42: 482–495.through simulations.

Crow, J. F., and M. Kimura, 1970 An Introduction to Population Genet-Finally, none of these methods allow for migration
ics Theory. Burgess Publishing, Minneapolis, MN.

or population subdivision. They assume single isolated Estoup, A., and B. Angers, 1998 Microsatellites and minisatellites
for molecular ecology: theoretical and empirical considerations,populations that do not receive any migrant individuals
pp. 55–86 in Advances in Molecular Ecology, edited by G. R. Car-from elsewhere. If this hypothesis were false, estimates
valho. IOS Press, Amsterdam.

of effective population size would be biased upward. Ewens, W. J., 1979 Mathematical Population Genetics. Springer-Verlag,
Berlin.Moreover, all previous attempts to estimate gene flow

Ewens, W. J., 1982 On the concept of effective population size.could not untangle the effect of local drift from immi-
Theor. Popul. Biol. 21: 373–378.

gration. Fisher, R. A., 1930 The Genetical Theory of Natural Selection. Clarendon
Press, London.In conclusion, we address the issue of obtaining a

Gabriel, W., and R. Bürger, 1994 Extinction risk by mutationalconfidence interval in practical cases. Resampling meth-
meltdown: synergistic effects between population regulation and

ods have their drawbacks. For example, the bootstrap genetic drift, pp. 69–84 in Conservation Genetics, edited by V.
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